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0. Abstract (continued)

treated independently. Each impressed current produces a "dominant" current
distribution, a characteristic of the element, which can be readily computed.
Current coupling is formulated by "intrinsic" impedance matrices which relate
the scalar potentials at the terminals of an element, caused by its dominant
current distributions, to the impressed currents of the element. Field coupling
produces "scatter" currents on all the elements, and is formulated by a "field
coupling” matrix which relates the scalar potentials at the terminals, caused
by field coupling, to the impressed currents at all the terminals. Intrinsic
and "field coupling" are combined to form the "complete" impedance matrix of
the diakopted antenna. Enforcing continuity of the currents and equality of
the scalar potentjals at all the interconnections between the elements yields a
system of linear equations for the junction currents and the input impedance of
the antenna. Current coupling dominates over field coupling. Field coupling

due to the dominant current distributions of the elements is c¥ primary importance
wnile field coupling due to the scatter currents is, in general, negligible.
This theory is applied to several multi-element antennas and the results areqL\\\\\\

compared with other methods to highlight the numerical advantages.
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Summary

This research document presents a new theory for the analysis of multi-
element antennas which consist of interconnected conductive structure elements
of electrically small dimensions. The theory is based on the retarded electro-
magnetic potentials winich permit a diakoptic approach to the problem. Tre
antenna is broken up into its individual structure elements. Each element is
assumed to be excited, a) by currents which are impressed at its terminals,
i.e. junctions with adjacent elements (current coupling), and b} by the electric
fields of the currents and charges on all the other elements (field coupling).
Both excitations are treated independently. Each impressed current produces a
“dominant" current distribution, a characteristic of the element, which can be
readily computed. Current coupling is formulated by "intrinsic" impedance
matrices which relate the scalar potentials at the terminals of an element,
caused by its dominant current distributions, to the impressed currents of the
element. Field coupling produces "scatter" currents on all the elements, and
is formulated by a "field coupling” matrix which relates the scalar potentials
at the terminals, caused by field coupling, to the impressed currents at all
the terminals. Intrinsic and "field coupling” are combined to form the
"complete" impedance matrix of the diakopted antenna. Enforcing continuity of
the currents and equality of the scalar potentials at all the interconnections
between the elements yields a system of linear equations for the junction
currents and the input impedance of the antenna. Current coupling dominates
over field coupling. Field coupling due to the dominant current distributions
of the elements is of primary importance while field coupling due to the
scatter currents is, in general, negligible. This theory is applied to several

multi-element antennas and the results are compared with otner methods to

highlight the numerical advantages.
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I. Introduction

Improved tactical communication systems require antennas which are
electrically small (i.e. small compared witi, the wavelength), have very large
bandwidths and reasonably high efficiency. It is well known to antenna
experts that these requirements work against each other. The problem therefore,
is to find sophisticated antenna structures which provide the best compromise
between these contradicting requirements.

Experimental investigations of empirically designed multielement antennas,
i.e., antennas which comprise a number of interconnected and closely spaced
conductive elements,have shown promising results. An example of such a broad-
band multielement monopole antenna is shown in Figure 1. This antenna con-
sists of four vertical conductors. The two thicker ones are grounded, while
the other two are interconnected near the ground plane and connected to the
input terminal. Each vertical conductor has a top capacitor in the form of
a metal plate, and there are inductive interconnections hetween the plates in
the form of wire loops. But antennas Tike the one mentioned, whose functioning
is not quite understood, are not amenable to conventional computer analysis.

An analytical treatment of such a composite structure appears to be a
rather hopeless undertaking. Commonly used numerical techniques are impracti-
cable because they would require computers with enormous storage. Moreover,
these techniques do not aiwavs yield reliable results [2].

This research offers a new approach to problems of this kind. According
to this approach the composite structure is diakopted into its individual
structure elements. As a simple example, Figure 2 shows a diakopted dipole

with end capacitor plates. Each structure element is characterized by

electrical gquantities which depend only on size and shape of the element, and

R
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FIGURE 1

Broad-tané “ulti-element Moncrole Anternna







the assembiy is treated similarly to the interconnection of n-port networks.

The excitation of each element is ascribed to two causes, a) the currents
entering the element at its "terminals,” i.e. junctions with adjacent elements
or the source, and b) the fields of the currents and charges on all the other
elements. The first is referred to as "current coupling" and the second as
“field coupling." Both excitations are treated separately. Current coupling
impiies hypothetical sources with a single terminal and the capability of
impressing a current onto a conductor. Although such sources violate the conti-
nuity condition, their assumption is permissible if the electro-magnetic fields
are expressed by the retarded electromagnetic potentials. Although the conti-
nuity condition is violated in the treatment of individual structure elements,
it is restored when the elements are interconnected. Thus, current coupling is
computed by impressing a current at a terminal of a structure element. This
current spreads over the surface of the element and produces a current distri-
bution which is uniquely determined by the geometry of the element and the
Tocation of the terminal and is called the dominant current distribution
associated with a given terminal. There are as many dominant current distri-
butions as there are terminals. The relationship between the scalar potentials
at the terminals (produced by the dominant current distributions) and the im-
pressed currents is formulated by the “intrinsic impedance matrix" of the
element.

Field coupling,on the other hand,excites scatter currents which are super-
imposed on the dominant current distributions. The scalar potentials at the
terminals due to field coupling depend on all the impressed currents. Their
relationship with the impressed currents is forumlated by a "field coupiing”
matrix. The intrinsic impedance matrix and "field coupling" matrix combined

together form the "complete impedance matrix" of the diakopted antenna. This

PR
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matrix relates the total scalar potentials at the terminals of all the elements
to all the impressed currents.

Interconnection of the structure elements, which requires equal scalar
potentials at the interconnected terminals and continuity of the junction
currents, it formulated by an interconnection matrix. In this manner a system
of linear equations is obtained which yields the junction currents and the
input impedance of the antenna.

A most simple antenna to which the theory applies is a simple monopole
antenna with a top capacitor. In this case, there are two structure elements,
the vertical conductor and the top capacitor. The ground plane can be replaced
by the antenna image. No systematic way of computing the impedance character-

istics of this antenna has been reported in the literature.

ey ——————
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I1. Diakoptic Theory of Multi-Element Antennas

In this section we shall develop the essential theoretical results re-
quired to implement the diakoptic theory.

Consider a multi-element radiating structure such as shown in Figure 1.
Various elements are interconnected to each other via terminals of junctions.
Let each radiating element be disconnected or (diakopted) from all other ele-
ments and be suspended in space. The assemblage of these disconnected ele-

ments is called the diakopted (or primitive) system. Each element has many

terminals on each of which certain impressed current and potential is assumed.

The essential requirement for this diakopted system with impressed currents
along the junctions is that it be performancewise identical to the assembled
antenna. Thus,

a) The sum of the impressed currents is zero at every junction between
the structure elements and the continuity condition is satisfied at
every input terminal. This requirement assures that the field of
assembled antenna is Maxwellian.

b) The scalar potentials at the interconnected terminals are equal.

c) The potential difference between the input in terminals is equated
with the driving voltage of the antenna source.

Let the potential-current relationship at every terminal be written

in matrix form:
[s] = [Z1[1] [diakopted antenna] 1.1
(57" = [C1'[1]" [assembled actual antenna) 11.2

Requirements (a), (b) and (c¢) represent Kirchoff's laws for interconnected

structures and can be written as
(1] = [cIf1y” C e 11.3
[3)' = [€1,[3] 1.4

IR F—
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(10 013 = Lol [1] 11.5
[C]t represents the transpose [C].
Matrix [Z] represents the impedance of the cdiakopted antenna and primed quantities
refer to the actual assembled antenna. [C] may be a rectangular matrix with

LCijJ 1s 0 or 1.

e e ———— . L

From I11.3, I!.4 and II.5, the impedance matrix of the actual structure can be
written as !

[2]' = (¢ [21Lc]

An example at the end of this section shows how [C] and [Z]' are obtained.

The essential results of this section show that in order to obtain [Z]',
we have to only compute the impedance matrix [Z] of the so called diakopted
structure.

The most important point here to remember is that the elements of the
impedance matrix [Z]' depend upon simultaneously knowing current distribution
on all the radiating structure elements. Thus, without diakopting the struc-
ture, we have to simultaneously solve as many integral equals as there are
radiating elements. On the other hand, the elements of the impedance matrix
[Z] of the diakopted structure can be found by computing the current distribu-
tion on individual elements separately and hence involves solving as many

integral equations as there are radiating structures, but only individually.

This results in a tremendous savings of numerical computation. In what follows
we shall show how the so called total, primitive (or diakopted) impedance

matrix [Z] can be computed,




II1. Impedance Matrix of a Diakopted Antenna

Consider each element of a diakopted antenna.

The excitation of each element is ascribed to two causes. a) the currents
entering the element at its "terminals," i.e., junctions with adjacent elements
or the source, and b) the fields of the currents and charges on all the other
elements. The first is referred to as "current coupling" and the second as
"field coupling." Both excitations can be treated separately and the resulting
compling can be superimposed due to linearity. Current coupling implies hypo-
thetical sources with a single terminal and the capability of impressing a
current onto a conductor. Although such sources violate the continuity condition,
their assumption is permissible if the electro-magnetic fields are expressed by
the retarded electromagnetic potentials. Although the continuity condition is
violated in the treatment of individual structure elements, it is restored when
the elements are interconnected. If a current is impressed at a terminal of a
structure element,the current spreads over the surface of the element and pro-
duces a current distribution which is uniquely determined by the geometry of the
element and the location of the terminal. This is called dominant current dis-
tribution of a particular element. Therear2 as many dominant current distribu-
tions as there are terminals. The relationship between the scalar potentials at
the terminals, produced by the dominant current distributions, and the impressed
currents is formulated by the "intrinsic impedance matrix" of the element and
is referred to as [Z(I)].

Field coupling excites scatter currents which are superimposed on the domi-
nant current distributions. The scalar potentials at the terminals due to field

coupling depend on all the impressed currents. Their relationship with the im-

pressed currents is formulated by a "field coupling" matrix [Z(F)].

(2: = xny + [zr)]
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This matrix [Z] is called the total impedance matrix of the diakopted antenna
and relates the total scalar potentials at all the terminals of all the ele-

ments of the diakopted structure to all the impressed currents.

ITI.1 Current Coupling Between Structure Elements and Intrinsic

.__.__v”-._ﬁﬁy

Impedance Matrix [Z{(I1)].

A. Structure elements with one terminal

Consider one of the capacitor plates of the dipoie in Fig. 2 separated

from the other elements and suspended in space, with a current I impressed at

the terminal, i.e., contact area in the center of the plate (Fig. 3). The con-
tact area ¢ is considered very smail compared with the surface area of the
element. Excitation by an impressed current cannot be treated with Maxwell's
equations, because Maxwell's equations imply sources which separate positive
and negative charges. In contrast, impressed currents require sources which
produce charges. The retarded electromagnetic potentials do not impose any
conditions on the source, and can therefore be used for our problem.

If i(F) is the surface current density, and q(r) the surface charge

density due to the impressed current I, the retarded potentials are

B(Fr = = | F(F)G(F,7')dS  (vector potential) I11.1

(V)

r) = 322';3 g(r')G(r,r')dS {scalar ootential} 111.2
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anere ' is the positiun vector o7 the charges anc lurr-ents .n e 2.7 o=
slements ¢S, and r that of the doint of cbservation. The quentizies & = zng
g(r) must satisfy the following two eauations on the surface 07 Ine 2l2 ent

gutside the contact irea ::

E{r) «d¥ ==~ {JuA(r) + 75(r)]~» d§ =10 (Boundarv conditiin; I11.3
73(r) + jwal(r) = 0 {Continuity condition’ II1.4

The condition that the current flux through the boundary curve 7 27 <ne con-

tact area o is the continuation of the impressed current [, is civen as:

P eH(R)dr = I 111.5 i

where t(r) is a unit vector tangential to the surface S and normal -. The
current and charge distributions T(r) and q(r) due to the impressed current I

£

are termed as "dominant" distributions since the currents due to vield coupling

between the elements are, in general, relatively small, From the boundary
condition III.3
|
;’Sem-mds - - {'S[mm + F5(F)]-T(7IaS = 0 1.6 i

The surface of integration S is the surface of the element with the excliusicn

of the contact area. Using the relations

and applying Gauss' theorem, one obtains from III.8




FiVes = O (RTIRT(F e 111.8

" the contact area - is sufficiently smail, » can bDe considerad zons*ant wizh-

‘n the contact area. Thus, with (5), equation (3) reduces to

jol TRF)-T(7) + 5(7)a(F)1ds = ol
‘S

-
—t
-
(Yo}

wnere » is the scalar pcotential at the contact area.
The ratio between % and [ can be used to define an impedance which shai’
ce termed "intrinsic impedance.” If A and & are expressed by the current and

:narge distribution, the intrinsic impedance of the ealement is

U0 = £ =2 AL + 5(F)a(7) Ias

12 /S
Sk [ grey IELTED 1 a(FalF ) g g I11.10
4 jS JS' ? E I2 k2 Q2 . )

wnere Q = I/jw is the total charge on the element. The current and charge Jis-

tribution functions i/ and a/Q are solely determined by the geometrv of tne

zlement and the location of the coupling area.

When the intrinsic impedance is computed with II1.10 for a conductor of any

snape, for extremely Tow frequencies, it takes the form

S R AT
(1) 'jT,E‘h/e— (w0) 1.1

~nere C is the static capacity of the element. The first term 1/i.C is the one

14
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anich i3 to be expected. The seccnd term repressnis 2 necitive resistancs o7
-23 onms and is not guite obvious. It is brought abcut by the 72¢7 Tnet zr
iwouressed current produces a charge on the element witnout & Lounteringrie

in contrast to a Maxwell source. If the scalar pctentia( is expancdec in 1

Jower series in w, cone obtains

! ‘1‘75 )Sl 47"3 /Sl 1;_,:11 'S !
\ -
The first term of this expansion is the static potential of the cnarzes. The

second term which is independent of r represents a notentiai, termec "back-
ground" potential 250 which is uniform in space and has no dradient. This
means it does not produce a field. It is this background potentiai which
oroduces the -30q term in III.11. When the element which we assumed to be sus-
penced in space is within the antenna structure the backaround potential is
compensated because the combined charges on all the other elements are negative-
1y equal to the charges of the considered element. The background potential

can be avoided if the retarded scalar potential is redefined as modified scaiar

20tential

where

This modified scalar potential which will be used throughout the pager

imate as it is not conflicting with Maxweil's theory. Since 7>

15
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At

ccundary congition [11.3 ana cthe docminant curren® districuticn oo’
tnerefrom remain unchanged it tne conventicnal notential : 15 substit.ad

<he modified potential +.For a Maxwell system : and : are identical, since iq"’
extended over the entire surtace of the system is zero. The intrinsic impedance

0T 3 structure element with one connection becomes

2= 2232 [ AR () + 3(F)a(F) 1ds
i IL )S
. ” :'— o - \? 1y “ - - 2N ( :‘7_1
. o [ igppy ] LA L G(R, R W s II1.14
isis | I K e

—

I11.74 represents a stationary formulation of the intrinsic imped-
ance. This means, small errors in the dominant current distiribution have only
a second order effect on the intrinsic impedance. {See Appendix J)

Excitation by an impressed current I at the terminal can be considered

zquivalent with the excitation by an oscillating charge
Q= +— III1.15

#nich is placed above the contact area at a distance d-C as shown in Fig. I,
The charge on the contact area o consists essentially of the image charge -Q,
with the charge +Q-distributed over the surface areas of the structure element,
because the net charée on the element must be zero. The equivalence between
charge and current excitation is shown in Appendix 1.

The intrinsic impedance Z(I) of an element with one terminal can be reprc-
sented by a lumped element circuit as shown i& Fig. 5. For low frequencies,
i.e. wnen the dimensions of the element are small compared with tne wava ~enn=-
< ind L can be considered constant, while R iﬁ;reases pronortionally with w?:

1 ol
| -

Z=m-‘juL+R(u> ey
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In case ¢ instead of s is used, the individual elements will show an additional -302.

Y

fictitious resistance in the intrinsic impedance. However, the impedance of the
totally assembled antenna is the same as the conventional impedance due to

automatic compensation of -30Q.

3. Structure elements with two or more terminals

A structure element with two terminals such as the cylindrical conducicrs
of Fig. 2 has two dominant current distributions, one associated with =ach of
the impressed currents (Fig. 6). Each dominant current distributicn sroduces
a scalar potential at both contact areas. If %11 and 52] are the potentials
at the terminals 1 and 2 due to I,, and 5]2, 522 those due to I,, then, the
relationship between the total potentials &] and 32 at the terminals and the
impressed currents can be written as

by o= by 6y, = (1) + 2,0,
111.17

5, =3, + 4, = Z]Z(I)Il + ZZZ(I)IZ

For a structure element with M terminals the relationship between the
terminal potentials and the impressed currents is formulated by an M x M intrin-

sic impedance matrix.
(2] = [23(1] 111.18

wrere

IjIk
M(( r_ -, .{(;)1k(Fl) : ‘:(- . q*(F)qk(F')—E » )
iy JSJS'{G(r’r ) -J-TSTI————- - ;5 a{r,r') -J-Ti;z:____;dggv [11.1¢

R s T



The quantities ij,qj and ;k’qk are the dominant current and charge distribu-
tions generated by the impressed currents Ij = ijj and Ik = quk, and Kk’ik
are the retarded potentials associated with ;k’qk‘ (II1.19) is derived in
Appendix 2.

The symmetry of the intrinsic impedance matrix, ij(I) = ij(l), is evident
from the second formulation of III.19. In Appendix 4 it is shown that III.19
is a stationary representation of the matrix elements.

A lumped element equivalent circuit for a structure element with two ter-
minals is shown in Fig. 7. For sufficiently low frequencies the capacitors and
inductors can be considered constant, while the resistors increase with w?. The
resistor which is in series with the capacitor is negative, but smaller than the

resistors associated with the inductors.

I111.2 Field Coupling Between Structural Elements.

Field Coupling Impedance Matrix

We now consider a diakopted structure and arbitrary currents impressed at
the terminals. The capacitively loaded dipole of Figure 2 may serve as an example.
The terminals are identified by a superscript i and a subscript k, the superscript
referring to the number of the element, and the subscript referring to the number
of the terminal on the element. If there were no field coupling between the
elements, the current distributions on all the elements would be the dominant
distributions associated with the impressed currents.

The field of a dominant current distribution is non-Maxwellian since the
associated net charge is nonzero. If a current I; is impressed at the terminal

(;), the non-Maxwellian field of the dominant current and charge distribution

;;, q; induces currents on all the other elements. The scatter fields excited

by these induced currents are Maxwellian, since induced current distributions

have no net charge. These "first order" scatter fields excite second order

Baa X ol i W 1Lk o
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scatter fields and so on, each higher order having a greatly reduced amplitude.

A1l these scatter fields, when summed up, form a multiple scatter field which

is Maxwellian. The currents and charges associated with the multiple scatter

field are distributed over all the surfaces s" {including 51) and shall be denoted

5i;n, q;n’ the super and subscripts indicating that they are produced by the

S

impressed current IL and located on the element n.

The total field generated by I; satisfies on every element the Houncar;
conditions
(Gu(B) + 6R) + 3(5, +36)) x dS" =0 (n =1, ..., 4, ...N) 117.20

where ﬂ;, 5; are the retarded potentials of the dominant current and charge
distribution ?;, qL, and SAL, 6$; those of the scatter current and charge ais-
tributions 67&", dqln combined. N is the number of elements.

Since the electric field of TL, q; satisfies the boundary condition on

S', it follows from (20) for n = i that
(jushy + 656,‘;) x d' =0 j
Thus
d r _.i - _‘ “lj 1 i=], ...,N ]
[ ; % jushy + vaék).ikgds =0, ITr.21 :
st < k=1, ..., M,
Using the relations II1I.7 and Gauss' theorem one obtains the "backscatter" . !
4
!

potential due to the field interaction of the excited element with the

other elements:

P P,
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RS

[aN)

i, . .,
Soen ol . TN S U i
5(F) I, = Ju! ; (:ﬁk-1k+ a;qu)dS it
K
The letter ¢ indicates field coupling, the first pair of indices f;} rerars !
to the terminal at which ¢ is determined, and the second pair %o the termina®
of the impressed current which produces this potential.

As shown in Appendix 3

N e

SRTTPL IS S BUE NOE
;Si(°Ak IR qk)dS = )

T

(;if.agf,n 5 'SliQ;?dSn 111.23

Furthermore, from the boundary conditions I11.20 usino the relations III.7 and

Gauss' theorem, follows

. 3 Ny (-':)‘1( + 5&;) éq;'n'dSn = 0, for every N including i
‘S _ - T11.24

bl e
The right-hand side of 111.24 is zero since for scatter currents tre rip
integral of Gauss' theorem in IIL.5 is zero {see Appendix 5).

From the last three equations, one obtains the "back scatter" impedances

i,
.. 6 (F)
i,i <2 N i s i .
2(F) = Kk o g [T 7T (AT v sslal " 111.25
k9k Ik )Ik ! n=115
(ko

which has to be added to the diagonal terms of the intrinsic impedance matrix

;’;, using the notation of this section. Generalization of 111.25 to obtain

the scatter field contributions to the off-diagonal terms is straightforwarc.

Z

Cne obtains
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For k = j equation (26) transforms into [II.25

- ey e ——

1,4
Let us now determine the potential &(F) produced by the impressed cur-
k,m
rent I; at the terminal (;). Because of the boundary condition I11.20
' 111.27 §

. RR 7L =, =1 Ay ozigEl
Jsi[Jw(Am + oAm) + 7(;m + S¢m)].1kd§ =0,

and

( , [jw(Al + aAl) + ?(6; + 55“;)}55,’“’%5" =0 111.28 j

where the second equation hoids for every n including i. The ootentials

SA; and 56; characterize the scatter field which would be excited by I;.

As before, we apply IIl.7 and Gauss' theorem to the above two equations

haihaich

to obtain
. 3
52?; tagol | AT+ s%qlyast + [ (sB%T1 + s5%qT) st I11.29
k Joit™m Tk T fmik Joit ™ m Tk mk : .
k,m 'S S |

_f ieqn , cioany en i .74n LU N 111.30
0 =" (Ak-xm * 49, }dS' + j (aAk 8127 + 8h 89 )dS 1.3 .

ish s"

The first term in [11.29 represents the contribution to the terminal potential




R it o T AP S

I
'(F) from the non-Maxwellian field of the dcmirant current and charge cistribu-
m

F s e

b

tion 75, q;, and the second term that from the scatter current anag charge dis-

- . :?(‘.,n |
tributions SR oqm

As shown in Appendix 3

, . N . -
2 1 L1y i f i 22,0 -1 2,0y N
[ iy ) -
b ilRye Ty w shpayast = Ty ((R-sT7m+ 8y 5a, 7S I11.31
S n=1/S
1,1
Expressing $(F) in terms of an impedance
k,m
‘i,z 1,2 2
bF) = Z(F) 1. I11.32
k,m k,m

the field coupling impedance between the terminals (l) and (2)

m
becomes
i,2 T . ) . N . . o
4 T af Loei o~ iy el [ (exi.eztan, o1l bn .
2(F) = —— juwl! .(A2.3] + 4. q.)ds' - ¥ (6R, 572"+ 33 3a°MasT, 1 #
1,2 it'm 'k m-k “ n k kK™ "m ?
SR ) S EN n=17s m |
IT11.33

Equations I11.26 and I[I11.27 formulate the elements of the field coupling im-
i

pedance matrix [Z(F)] which relates the scalar potentials &(F) at the terminals,
k

caused by field coupling, to the impressed currents:

X i N Ry N
(3R] = [2(RAI1], 8(F) = T I &F) = § 111.38
k 2= m=1 k,m =




IV. Complete Impedance Matrix [Z] of the Diakopted Antenna

The intrinsic impedance matrices of the individual structure elements
can be combined into diagonal block impedance matrix [2(1)] by writing the
matrix elements ik,j (Eq. III.19) in the form z;:;(l). The superscript i
identifies the terminals k and j as belonging to the element. The block
matrix [Z{I)] whose elements Zl:?(l) are zero for i # 2 is the "current
coupling matrix" of the diakopted system, and relates the terminal potentials
. v 4,0y i
9, (1) = 121 j£1 zk,j(I) Ij
due to current coupling to the Mi impressed currents of the element 1.

The sum of the matrices [Z(I)] and [Z(F)], i.e.

[2] = [Z(1)]+ [2(F)] V.1
forms the “"complete impedance matrix" of the diakopted antenna, which
formulates the relationship between the total terminal potentials

R M .
A1 ~1,R
6, = } Lo,

=1 m=1 k,m

produced by current and field coupling, to all impressed currents. In

matrix form

(3] = [Z101] V.2

If the matrix elements Z;:;(I) (eq. II1.19) and ZZ:;(F) (eq. I1I1.26) are
added, the resulting elements 2;:} have the same formulation as those which
pertain to field coupling between two different elements (eq. I11.33). In
other words, if the condition i # 2 is dropped, equation III.33 can be used
as the general formulation for all the elements of the complete impendance

matrix of the diakopted system.

0y o AU B B g v




Calculation of the impedances according to eq. III.33 requires, in principle,

computation of the scatter current and charge distributions. However, numerical

results obtained with this theory indicate that coupling by the scatter currents
is a negligible effect. It has been found that coupling by the junction currents

prevails over field coupling, and field coupling by the non-Maxwellian fields

ey ———

dominates over that by the (Maxwellian) scatter fields. In principle, the field

coupling effect by the scatter currents can be obtained with an iterative pro-

cedure which is not discussed here. i
If coupling by the scatter fields is neglected, the formula for the elements

of the complete impedance matrix for the diakopted system reduces to

- _Jw [ 2 7 ~i Ty el
J i(ﬂm Tk * ”mqk’ds

K=, M, V.3 L

Thus all the matrix elements can be computed from the dominant current dis-
tributions.

The symmetry of the (2], i.e.
v.4 #

can be easily verified, by expressing in (III1.33) the vector and scalar potentials
by the current and charge distributions according to (III.1) and (I11.12).
Equation (II1.37) represents a stationary formulation of the matrix ele-

ments of [2]. This means first order errors in the current and charge dis- i

tributions lead to second order errors in the impedances (Appendix 4&).




V. Interconnection of Diakopted Elements to Obtain Impedance of Assembled

Multi Element Antenna

The requirement for the diakopted structure with impressed currents to be
performancewise identical with the assembled antenna are that:

a) The sum of the impressed currents is zero at every junction between

vem e - e

the structure elements and the continuity condition is satisfied at
every input terminal. This requirement assures that the field of
assembled antenna is Maxwellian.

b) The scalar potentials at the interconnected terminals are equal.

¢) The potential difference between the input in terminals is equated

with the driving voltage of the antenna source.

Imposing these junction conditions; the matrix equation (IV.2) yields a
system of Tinear equations for the unknown junction currents and the input im-
pedance of the antenna. Using network theory concepts the reduction of (IV.2)
to this linear system of equations by enforcing the junction conditions can
be formulated with a connection matrix [C] which reduces the number of poten-
tials and currents of the diakopted structure to those of the actual structure
[3]. As discussed in Section II, the impedance of the actual assembied antenna
can be written as:

[z1' = [¢1,[Z](c]
where [Z] and [2]' refers to the actual and diakopted structure respectively.

The following example shows how [C] and [2]' are obtained.

27




Example

As an example we apply the diakoptic theory to an ordinary thin-wire
d1ipole antenna and compare the results with the exiact data available in the
licerature. To obtain a multielement structure we cut edach wire in nulves, 3s

shown in Figure 8, and consider each half as a structure element. The giakodted

dipoie comprises two structure elements with one terminal and two structure
elements with two terminals, so that the total number of terminais is six. The
complete impedance matrix of the diakopted structure [Z} is therefore a 6x6
matrix. However there are only 8 different impedances cecause the Tour struc-

-ura elements have been assumed to be aiike.

using the enumerations of Figure 2 the =atrix 2queticn (1..2) nas tre forr
—
a3 , 53
;«] [ ZO Z.l 23 24 Z6 L7j ‘[I]
Ty ; Co
Al i tT‘.
N N L N R R
a1 - . R
ia] 2,12, IylZ, I5.1, i I
f = | i i
Y ! ; ! 2
172 L1253 41 4 %EJ I
i i
37 Z, EZS 2312, 2,174 | I
£ 2,:Lg 1, Iy 1|4 N 1
R ——— ol
with
+ . 233=Z” _Z” _.22 =222=Z44 ?
o) 11 22 11 22 n 22
) N & R 21 _ 24 _ .47
Ly = Ly = 1y = Ly = Tgy = Iy = Iy
_S0 S 22 22
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KT S &
fa Tlip T i Tyt
_L12 _ L2 .
I3 = Iy = I, ij
l
32 _,23 _ 14 _ .4
Lg =y = 4y = pp = Iy *
7073 .83 S
7 12 21 1
|
I7 coupling by the scatter currents is neglected, tne darkened portic: '§
of the impedance matrix Z is the current coupling matrix Z(I). 5

The interconnection conditions require 1

3. 3. 41

I]——IZ_I] ;] Qz‘Q]

2 22 k
12 = - I] = -10 ¢1 - ¢2 = VO

4 _ 2 N

b=-h=1 2 =4y =0y ’

where IO’ VO are input current and driving voltage of the antenna.

Because of the symmetry of the antenna

1

= - = - : ‘:2 - =
=1, 255 & 5,

Cdrrent and voltage matrix of the interconnected antenna are !

4 = Lo
T = (g2, 06 - :

Thus, the interconnection matrix becomes

3 1 1 2 2 4
Gododh & GG
M 1o 0 1 i a0 & o0
€l = 3 ——
t3y 1 ot oo o1 | o

30




and the impedance matrix of the assembled antenna

‘i(z0 - 1,) (22, - 2, - Z,)
{ (22, - 2, - ) | (22, - 2Ly - g+ 2L - 2,)

[(z']1=2

For the numerical calculation of the impedances, the following simplifying
assumptions have been made:

a) coupling by the scatter currents is negiigible

b) the dominant current distributions which, in this example, are the

same for all the elements, can be approximated by linear current
distributions (uniform charge distribution).

Although the latter approximation is rather crude, one should expect rea-
sonable results if the wire sections are short compared with the wave length,
because all the impedance formulas are stationary expressions. Linear current
distribution permits analytic formulations of all the impedances ZO’ Z], 22 ‘
etc., and numerical calculations with a pocket calculator (such as HP 25).
The results obtained are presented in Figure 9. The curves are plots (from a
table by King [4]) of the real and the imaginary part of the input impedance
of a dipole for 1n %% = 5 as a function of kL; 2L is the total length of the
dipole, and a the wire radius. The crosses mark the values of the input im-
pedance from (45) with the above assumptions. For kL < 0.8 the deviation of
the real part of the input impedance from the exact value is less than 10% and
for the imaginary part less than 1%. From this one can conclude that the linear
approximation for the dominant current distribution is adequate if the length
of a wire section is <1/15A. This has been born out by computer results which
were obtained when each dipole wire was diakopted into 4 equal sections. These
results are marked in Figure 9 by dots and are in good agreement with the exact

curves even beyond the resonance of the antenna.
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VI. Receiving Antennis

In the case of a receiving antenna the excitation is produced by an ex-
ternal field E(e). The source element is replaced by the input impedance of
the receiver. All the quantities associated with the external field should be

characterized by the subscript e.

44__.(,

The boundary conditions on the element i yields

Jsﬂm(e) *75(9) - E(e)]-f(e}dsi = 0 ‘

or

I 4 le) = ijsi (A(e)T} + Bledalsas' - jsié(e) (e Jas' VL

where TL: q; are the dominant current and charge distributions which the im-
pressed current I; wauld produce on this element. ¢;(e) the potential at the
Junction 1,k caused by the external field. From the boundary condition for

the dominant current distribution one obtains
j [ijﬁl + grad 31).’1’(eﬂd51 = ij (E;S(e) + alq(e))dg =0 VI.2
i Si
since i(e) is zero at the junction. As shown in Appendix 2

J i(ﬁl-T(e) + 3Zq(e))dsi = J 1_(I\(e)-?l + a(e)q:)dsi V1.3
S S

Thus Equation (VI.1) reduces to

Vi.4




The potential 3;(e) produced by an external field at the junction i,k is given

by the scalar product between the external field E(e) and the dominant current

distribution function i;/I;, integrated over the surface 5! of the element. In

the network presentation excitation by an external field is equivalent to vol-

tage sources V(e) in series with the terminal voltages of the intrinsic imped-

ca

ance networks.
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VII Numerical Results and Computer Programs

A. Cylindrical Wire

A.1. Dominant Current Distribution, Dominant Charge Distribution and

Intrinsic Impedance Calculations

i(x) = Current density

“PA—
X = Source point !
X' = QObservation point < ]
b i !
c = Velocity of light T i ¢
¥
A = wave length ix Fax
i TF !
1 = 3 =1 27 . I '
i i(o) o/ 2P ! ,"‘.*‘T x|
i(x) = current distribution at x 'w
s Jwt
L = wire length ﬂfae’
p = wire radius 'T
_ 2mc _ 2T - Z
w ==Y k = T kg = B
d = \/(x-x')2 + 4 (%)2 sin?(a/2)
The vector and scalar potentials at an observation point x are:
1 2n -jBd
i . 1y € i
A(x) = k‘{? [ i(x') 3 pdad x
0 ©0©
1 2n -jed
% =1 J 4 5y e '
§(x) = dnel !0 é -jw dx' (x') d pdadx

Component of electric current field intensity parallel to the surface of the

wiere is zero, and can be written as:

-(juh_(x) + 1 X)) - g

or

39
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I i & G )+ et) § ] daax!
Let
d i(x) = a,cosB(1-x;) X. 1<X<X;
dx J J j-1 J
X, = 1-3 j=1 N-1
J' N ? b4
Integrating: .
. . i-1
1(xj_]) = 1(xj) + £. ajcosB(1-x)dx
J
a.
= 3§ _l el _ . -
1(xj) + 3 (-sing(1 xj_1) + Sing(1 xj))
i(xN) =0
Thus
'; [ ( ) )
i(x) = -sing{1-x + sinB(1-x,)) +
>\=j+] B )\‘] A

Egﬂ_ (sins(]-xj) - sing(1-x))]

Substituting VII.2 and VII.3 into VII.1 and choosing

(i-3) _
X = —q , §=1,2,...,N-1, we obtain

N .
}oadg.. + kit % zx..) =0 = 1,..0.,0N]

2 aj(g sing(1-x.) - %'sin (1-xj_])) =i

J 0

where

VII.]

VII.2

VII.3

VII.4




] xj w .y d e‘jsd , L
. 93‘1’ = [ xf é cosp(1-x") ax" (a ) odadx ]X=X_i VII.5
j-1
X .
j om -jBd ,
= _e_ i - - i Ay ' !
kij = [ xf I8 3 (sin8(1-x;_;) - sing(1-x)) pdudx ]x=xi VII.6 :
j-1 .
X, . :
j m e-JBd ' ) .
?Aji = [ xj [ 3 3 <§1n6(1-xk) - S1n8(1-xl_]))pdadx ] ) VII1.7
3-1 % ?
Equation VII.4 is simultaneously solved to obtain Ayse-esdy and hence the ;

current and charge densities.
Quantities VII.5 to VII.7 are computed by quadrature integration formula.
These expressions can be considerably simplified when i#j, resulting in com-

putation saving.

A.2 Impedance Calculations
eg ) . 1 )
2= 2K | e 38 g [ix) A k) + L (k) Blxdaxt viLs
0 x=0 ‘o 0 z w
1
; 172 1 1« -j8d |
Z= 50— (&) [ ] [[B%(x)i(x) &
bn2giz e 00 0 d
-jgd
-%;i(x) g—x.i(x')(% + jB)] dadxdx' ]
or ;
] NN iBq.q.
o _J py2 2: . ) ;
Lramry ) L L EE 050 4 —L ] V1.8
;
where

4]
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*SOLUTION OF THE INTEGRAL EQUATION FOR THE CURKENT IN A LIFOLE OR MON :
LE .
SUEROUTINE INTEG(AsEyCyDslXsMYs X1y BETA»SyFUNCTIsRHO»DELTAs THETA) M
REALX3 ZsWEIGHT+X1BETAsXI»YJrRHOSDELTA» THETA !
COMFLEX%16 FUNC»S»yFUNCTI A
NIMENSION Z(24) »WEIGHT(24) |
DATA Z/0.57735026950,090,77459666F 5% |
0.339981044,0,861136312+0.0,0.538469310+% f
0.906179846,0,2384619186,0.661209387,0.932469514,%
0,148874339,0,433395394,0,4679409568,0.8650633467+% -
0.973906529+0.050.201194094,0.394151347+% P
0.570972173+0.724417731,0.848206583,0,937273392,% o
0,987992518/ :
DATA WEIGHT/1.0,0,3883888889,0,55555555 i
0.552145155,0.347854845,0,.568888889,0,478628671 5% -
0.2349246885,0,4467913935,0.3560761573+0,171324493,0.295524225,0.269266 {
¥ /s
0.21908463463,0,149451349,%

0.066671344,0,101289150,19843148550,186161000+7%
0.16626920690,139570678,0.,107159221,0.070366047+%
0.030753242/
5=(0,020,0)

ng 10
nog 1o
no 1o
Lo 10
0o 19
no 10

I=17y24
Il=1,LX
I2=1,2

J=17924
J1=1MY

J2=1s2

30 STERY=(DI-C)/MY
[1=C+STEFYXJ1

Ci=D1-
STEFX=(B-A)/LX

STEFRY

R1=A+STEFXXI1

Al=R1-
XI=((-1)XXKI2XZ(I)X(RB1-A1)+R1+A1) /2
Y= ({=-1)XKI2KZ ()X (D1-C1>2+D14C1)/2
FUNC=FUNCTI(X1sXI+YJyBETAYRHOsDELTA»THETA)

STEFX

10 S=S+(E1-AL)X(D1-C1l)/4XWEIGHT (I)XWEIGHT (J)XFUNC

RETURN

END!

SUBROUTINE SIMQ (AsBsNsKS)
REAL%8 A»HyRIGAs TOL » SAVE
ODIMENSION A(NYN) s B(N)
*FORWARD SOLUTION®
TOL=0.

KS=0
L0 65

JY=Jd+1
RIGA=0

po 30

"3EARCH FOR

0

J=19N

I=JsN

510 BIGA=ALTsJ)_

MAXIMUM COEFFICIENT IN COLUMN®
IF(DABS(RIGA) .GE.DABRS(A(I»J)1))G60 TO 30

ISR T, A R T




520
530
5490
5230
5460
570
330
390
500
310
620
&30
40
~50
240
<70
530
S0
200
710
720
720
740
750
7460
770
780
790
800
810
820
330
340
350
3860

IMAX=1
30 CONTINUE

"TEST FOR FIVOT LESS THAN TOLERANCE SINQULAR MATRIX"

IF(DABS(RIGA)>TOL)GO TO 40

Kg=1

RETURN

*INTERCHANGE ROWS IF NECESSARY"

40 ILl=J+NX(J=-2)

DO S0 K=JsN

SAVE=A(JsyK)

A(drK)I=A(IMAXK)
A(IMAXsK)=SAVE

"DIVIDE EQUATION RBY LEALNING COEFFICIENT®
S0 ACJRI=AC(IPKI/RIGA
SAVE=R(IMAX)

E(IMAX)=R())

E(J)=8AVE/RIGA

"ELIMINATE NEXT VARIAERLE"®
IF{J=N)GO TO 70

L0 &85 IX=JYsN

Do 80 JX=JYsN

S0 A(IXy JX)=A(IXs JX)=ACIXs JIXKACIy XD
45 BCIXD)=R(IX)=(RB(IIXA(IXyJ))
"BACK SOLUTION"

70 NY=N-1

IT=NXN

[0 80 J=1»NY

IB=N-J

IC=N

D0 80 K=1,J
B{IR)=B(IB)-A(IByIC)XE(IC)

80 IC=IC-1

RETURN

END

SURROUTINE INTEGRCINITIAFINAL s NUMINT »KERNEL »RESUL »X1yX2yBRETAyRHO»DE

L.TA» THETA)

B70 REALX8 Z(7)sWEIGHT(7)»INITIA»FINAL» INTERV»ArRsBETA»X1sRHO»X2sDELTA»T

HETA

380
850
900
?10
920
?30
249
P50
?60
270
780
¥ad)

COMFLEXX146 SyRESUL s KERNEL
DaTA Z /0.2011940945,0.394151347,%

0.370972173+0.724417731,0.8482063583,0.937273392+%

0.987992518/

DATA WEIGHT /0.198431485,0.,186161000+%Z

0.166269220690.139570678+0.10715922150.070366047%

0.030753242/
INTERV=(FINAL-INITIA) /NUMINT
A=INITIA

1000 RESUL=(0,0000,0,0000)
1010 U0 20 J=1sNUMINT

L0240 B=A+INTERV

-




LOTO
1530
1350
1360

T " P " T —— e i
,'.\-»;MW‘ el 1

ifi =

=00 OR00.0. 0000
Do 10 I=157
10 S=5+WETGHT (I) X (KERNEL (X1,X2 y (ZCID)X(B~-A)+EB+A)Y /2y RETAs RHO » DE

LTA» THETA) +RKERNEL (X1 X2 y (~Z(I1)X(B~-A)+EB+A) /2> RETAYRHO»DELTA THETA )

1970
1080
1290
1100
1110
1120
1130
1140
1180
1150
1170
L1180
11920
L1200
1210
1220
ey
123¢
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1240
135¢
11351
1352
1353
1354
1355
1356
3357
1358
1359
L340
L3461
1270
1380
L3920
1400
1410
1420
1230
L44C

S=5+0,202578242XKERNEL (X1 X2 s (R+A) /2> RETA+RHO»DELTAs THETA)
S=(E-A)/2.0%S

A=A+INTERV

20 RESUL=RESUL+S

RETURN

END

FUNCTION G(X1sX2yALFHAsEETASRHOYLELTATHETA)

COMFLEX%X16 GsESEL

REAL*8 X1yX2sBETAsRHOsALFHAs D D11 yELTAY THETA

D=DSORT ((X1-X2)%%X2+(2.0XRHOXDSINC(ALFHA/2.0))%X2)
D1=0USART((X1+X2+DELTA) X¥2+ (2. OXRHOXDISIN(ALFHA/2.0) ) XX2)
E=(1.0000y0.0000>KXOCOS(RETAXN)=(0.0000s1.0000)XOSINCRETAXD)
E1=(1.000050.,0I00)%NCOSC(RETAX[1)~-¢0.0000y1.,0000)XOSIN(RETAXD1)
G=(-E/DX%2-C(0., 0000+ 1. 0N00)XEETAXE/DIN X (X1-X2) /D~-THETAX(-E1/D1%%X2~(0,
»1.0D00)XBETAXEL1/D1) X (X1+X2)/IN1

RETURN

END

FUNCTION H(X1sX25ALFHAyRETAYRHOYDELTA, THETA)

COMFLEXX16 HsEsEL

REALX¥8 X1sX2syBRETAYRHOsALFHAsD1s 11y DELTAY THETA

D=0SART ((X1-X2)XX24+ (2, 0XRHOKDOSINCALFHA/2.0) ) XX%X2)
D1=D0SART({(X1+X2+DELTAYXX2+ (2. 0OXRHOXDSIN(ALFHA/2.0))%XX2)
E=(1.0000,0,.0000)XDCOS(RETAXI) ~(0Q.0N0091.0000)XNSIN(EETAXD)
E1=(1.0D000y0,0000)%0NCOS(RETAXI1)~(0.0D00+1.0D00)XLUSINCRETAXD1)
H=E/D+THETAXE1/D1

RETURN

END

FUNCTION HFR(ALFHAY X1y X2yRETAYFHOYLELTAy THETA)

COMFLEX%X14é HFRYEsE1

REALX8 X1+ X2yBETAsRHOvALFHAYIs L DELTAY THETA

D=DSART ((X1-X2)XX2+ (2, 0kRHOXDSINCALFHA/2.0) ) X%X2)
D1=0SORT((X1+X2+DELTAY ¥%X2+ (2, OXRHOXDSINCALFHA/2.0) ) XX2)
E=(1.00100G»0.000)XNCOS(RETAXD)~(Q.0000+1.0D00)XLUSINC(RETAXD)
E1=(1,0000s0,0000)%XNCOS(RETAXDL)~(0.0[00y1.00I00) XNSINCREBETAXDL)
HFR=E/DN+THETAXE1/L1

RETURN

END

FUNCTION H1(ALFHA»X1+X2+BRETAYRHOYDELTAY THETA)

COMFLEXX16 HL1SEsEL

REALXS X1+ X2yBETAYRHOvALFHA»LI» D1 »DELTA» THETA

D=0SART ((X1-X2)KXK2+ (2., OXKRHOXDSINCALFHA/2.0) ) %%2)
D1=DSQART((X1+X2+DELTAYXX2+ (2, 0kRHOXDSINCALFHA/2.,0) ) %%X2)
E=(1.0010050,0000)XNCOS(RETAXD)~(0.,0N00» 1,000 ) XNSINCEETAXD)
E1=(1,0000+0.0000)XNCAS(BETAXLL)~(0 0001 .0NOOYXDSIN(EETAXDY)
H1=E/D-THETAXE1/TI14¢1,.0~THETA) X (0. 0000+ 1 .00V KBETA

RETURN




1450 ENT
1360 FUNCTION IMFRER(X1rX2yALFHA»BETAYRHOsDELTA THETA)

1470 COMFLEX%X16 IMFKERyESE1L

1480 REALX8 X1sX2sALFHAYEETAYRHO» Iy DELTAs THETA D1

1490 D=DSART((X1-X2)Kk2+ (2, 0XkRHOKDSINC(ALFHA/2.0) ) %X%2)

1500 D1=DSART({X1+X2+DELTA) X2+ (2. OXRHOXDSIN(ALFHA/2.0) ) %%x2)

1510 E=¢1,000050.,0000)%NCOS(RETAXN) (0. 00001 ,0000)XISINC(RETAXD)
1520 E1=(1,0000,0,0000)XNCOS(EETAXN1)=(0,0000s1.0000)%kUSINCEETAXDL)
1530 IMPRKER=DNCOS(RETAX(1.0~X2))X(E/N~THETAXE1/D114+(1.0-THETA)X{(0,0000+1.0 r
NO0)YXRETA)

1540 RETURN

1550 END

1560 EXTERNAL GsH»s IMFKERyH1sHFR

1570 COMPLEXX1é RESGyRESH»GsHsA(40y40)yAK(40) yRESUL yCHAR(30) » CURR » IMFRER
+ 73 SUMH s ZFR»RESUL y CUR(30) » IMF yH1 y RESH1 » CHARGE s HFR

1530 REAL%X8 X1sX2ySTEFSRETA»RHO»XrREALFA» IMAGFAYREAATE IMAATERA(1600) sR
HU50)sATACL1600) sATE(S0) » MAGCHA » MAGCUR y IDCHAy IDCUR»DELTAY THETArALFHA

1590 WRITE (4652200)

1600 READ (S9%) NsEETAsRHO>DELTA> THETA

1410 IF (THETA~0.5) 171s171+172

1420 171 WRITE (491171)

1630 GO TO 173

1640 172 WRITE (421172)

1450 173 WRITE (45999) RETAsRHO>DELTA

1460 STEF=1.0/N

1670 NTIM2=2%N

1680 NMIN1=N-1

1690 X1=STEF ‘
1700 DO 10 I=1,NMIN1 ;
1710 X2=STEF/2.0 ]
1720 SUMH=(0,0»0,0) .
1730 00 20 J=1»N

1740 CALL INTEGR(0.0r3.1415s1sGsRESGsX1sX2»RETAsRHOyDELTAs THETA) g
1750 CALL INTEGR(0.0r3.141551>HsRESH»X1sX2yRETAyRHOsDELTAY THETA) ]
1760 SUMH=SUMH+RESH .
1770 ACI»J)=(ISINC(RETAX(1.,0-(X2-STEF/2.0)))~LSIN(RETAX(1,0-(X24STEF/2.0) }
)))/BETAKRESG+(OSINC(RETAX(1.,0-(X2-STEF/2.,0)))~DSIN(RETAX(1.,0-X2)))XEETA/ |
NEKRESH+ (DSIN(BETAX(1,0-(X2+STEF/2.0)))-OSINC(EETAX(1.0-(X2-STEF/2.,0))))XE :
ETA/NXSUMH i

B " ks 5.
RS PR VI S

"y

1780 20 X2=X2+STEF
1790 10 X1=X1+STEF

1800 X=STEF !
1310 0O 30 J=1,sN ly
1820 A(N» J)=(DSIN(BETAX(1.,0-X))-DSIN(RETAX(1,0-(X-STEF))))/RETA %f

1830 30 X=X+STEF

1840 O 40 I=1,yN

1350 40 AB(I)=I/N%1.,0

1860 DO SO I=1+N

1870 DO SO0 J=1,N

1380 REALFA=(A(I»JI+NCONJG(ACI¥yJ)))>/2.0D00

18390 IMAGFA=(A(I»J)~-DCONJGC(A(I»J)))/2.0000/¢0.0000»1.0000)
1900 REAATB=(AB(I)+DCONJG(ARC(I)))/2.0D00

1710 IMAATB=(ARC(I)-TCONJGC(AR(I)I)I/2.QL00/(0.0000,»1.0000)
1720 RACIHCI-L)IXNTIM2) =REALFA

46




L1230 RACIHCUEN-1)KNTIM2)=~IMAGFA

1940 RACI+N+{J-1)KNTIM2)=IMAGFA

1730 RACIHNT (JEN-1)KNTIM2)=REALFA
1960 RE(I)=REAATR

1970 REB{I+N)=IMAATR

1780 S0 CONTINUE

1990 D0 410 I=1»NTIM2

2300 [0 410 J=1sNTIM2

2010 ATAC(J-1)ANTIM2+I)=0.00100

2020 DO 410 K=1,NTIM2

2030 410 ATAC(J=1)XNTIM2+I)=ATAC((J=-1)KNTIM2+I)+RAC(I-1 ) XNX2+K)IKRA((J-1) %
NX2+K)

2940 DND 420 I=1,sNTIM2

2030 ATR(I)=0.00100

2060 DO 420 R=1sNTIM2

2070 420 ATB(ID=ATR(IX+RAC(I-1)XNX2+K)XRE(K)
2980 0O 430 I=1,NTIM2

2290 430 RE{(I)=ATE(I)

2100 CALL SIMRC(ATAYREsNTIM2,KS)

2110 WRITE (453000)

2120 WRITE (4+100)

2130 DO 110 I=1»N

2140 110 WRITE (&%) RE(I)sRECI+ND
2150 WRITE (46,100)

2150 WRITE (652000)

21635 UWRITE (456000)

2170 X=8TEF/2.0

2130 DO 1350 I=1sN

2190 CHAR(I)=(RE(I)%(1.0N100s0,.0N00)+RE(I+N)I*(0,0N00+1.0000))>%NCOS(RETAX(
1.0-X3)

2195 CHARGE=CHAR(I)/RETA

2200 MAGCHA=CDABS(CHAR(I))

2210 MAGCHA=MAGCHA/RETA

2220 WRITE (4+5000) X»CHARGE »MAGCHA
2230 150 X=X+STEF

2240 WRITE (49100)

2250 WRITE (492100)

2285 WRITE (496000)

2260 CURR=(0.,0D00+0.0000)

2270 X=1.0

2280 DO 1460 I=1sN

2290 CURR=CURR+(DSIN(BETAX(1,0-X))-DNSINC(RETAX(1.0~(X~-STEF))))/BETAX(RE(N
~I+1)%(1.000050.0000)+RE(N~I+1+N)%(0.0N00,1.00100))
2300 X=X~-STEF

2310 MAGCUR=CDABS(CURR)

2320 CUR(N-I+1)=CURR

2330 160 WRITE (6+5000) X»CURRyMAGCUR
2340 WRITE (6-100)

2250 WRITE (4923000

2360 “ZFR IS THE FOTENTIAL AT THE END
2370 Z=(0.0000+0,0000)

2380 ZFR=(0.0000,0.00L00)

2390 X2=0.,00100

2400 00O 170 I=1sN

47
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910 CALL INTEG(X2sX2+STEF90.053.14155151+0,0sRETAsRESUL » IMFKER s RHO» UELT
A THETA)

2420 CALL INTEG(X2sX2+STEF»0.093.1415,15151,0yBETAYRESUL s IMFKER»RHO» DELT
A THETA)

2330 Z=Z+RESULX(RE(IYX(1.,0000s0,0000)+RE(I+N)%(0,0000s1,0000)) !
2440 ZFR=ZFRARESULK(REC(I)%(1.0000rC . OLO0) +RE(I+NIX(0. 00005 1,0000) ) '
2450 170 X2=X2+STEF f
2450 Z=Z%377,0%(0.0000y1.0000)/4,0/3,1415k%2/BETA !
2470 ZFR=ZFR%377.0%(0,0000s1.,00100)/4,0/3,1415%%2/BETA

2480 ALFHA=1.0471

2490 IMF=(0,000050,0000) f
2500 X1=STEF/2.0 ,
2510 DD 66 J=1sN |
2520 X2=STEF/2.0 [
2530 00 55 I=1sN '
2540 N=DSART ((X1-X2)KK2+ (2, OXRHOXISINCALFHA/2.0) ) ¥X2) ‘
2550 D1=DSART((X1+X2+DELTA)XX2+ (2, OXRHOKISINCALFHA/2.0) ) *Xx2)

2560 E=(1,000050,0D00)XDCOS(BETAXI) ~(0,0000s1.,0000)XISINC(RETAXD)
2570 E1=(1,000050,0000)XNCOS(BETAXD1)~(0,0000s1,0000) XxISIN(EETAKIL ) ;
2572 CALL INTEG(X1-STEF/2.0sX1+STEF/2.0sX2-STEF/2,0sX24STEF/2.,0s1+1+0.78
54yBRETAsRESHyHFR s RHO» DELTAs THETA)

2573 CALL INTEG(X1-STEF/2.0sX1+STEF/2.0yX2-STEF/2.0sX24STEF/2.0s1+1+0.78
54y BETAsRESH1 sH1»RHOs DELTA» THETA)

2580 IMP=IMP+EBETAXX2XCUR (I)XCUR(J)XRESH=-((1.,000050,0000)XRE(I)+(0.0000,1
h LODOO)XKREB(I+N) )X ((1,000090,0000)KRE(J)+(0, 0000, 1,0D00)XKE(J+N) ) KDCOS (KET

AK(1,0000-X1))XDNCOS(RETAX(1,0000~X2) ) kRESH1
2590 55 X2=X2+STEF

2600 66 X1=X1+STEF

2610 IMF=IMF%(0,0000s1,0000)%377.0/4.0/3,1415/BETAK(1.0000+THETA)
2640 WRITE (6¢%) IMF j
2650 WRITE (6,2400) :
2650 WRITE (4s%) ZFR

LY 3

2670 100 FORMAT(’ 2
2480 2000 FORMAT(” DISTANCE CHARGE ")
2590 2100 FORMAT(” DISTANCE CURRENT )

24693 6000 FORMAT(’ DISTANCE REAL IMAG MAGN /)
2700 2200 FORMATC(’ NsBETAsRHO»DELTA»THETA’)

2710 2300 FORMAT(’ IMFEDANCE’)

2720 5000 FORMAT(F4.323F8.3)

i 2730 3000 FORMAT(’ /)

2740 2400 FORMAT(’ FOTENTIAL AT THE END') ,
2750 1171 FORMAT(’ MONOFOLE ‘) |

2760 1172 FORMAT(’ OIFGLE’)
2770 999 FORMAT(’ BETA=‘,F8.4y RADIUS=’sFB. 47 GAF=’1F8,4) ,
1780 SYOF '

3790 END

i s
| T
i
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0.9- Current Distribution on Single Wire
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vIGURE 10 Current distribution of a cylindrical conductor with a current
Io impressed at one end.
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VIII. Dominant Current Distribution and Impedance of a Circular Disc Fed

at the Center v

i
: 2oxi(x) = I{(x)
B- )\R
!
'
f
VIIIO
VIII.2
Boundary condition
-3 ' lg— § = I
JwA(x') - g g o(x') =0 VIII.3
From the above three equations
1 n -38d -38d ]
d (e d 2 & = ;
é g [dx‘ (d ) i I(x) + 8 q cosal(x)] dxda = 0 VIII.4 B
b
charge is zero at the center and takes the form of (l—xz)']/2 at the edge. i

Therefore, we assume

d
F;I

. X
(x) = a, X, 7 <X<X,




Integrating

N
I(x,) = [ a (A-x2 - /1-x2_.) k=0, ..., N-1
k' 7 35 )y A-1
Ix) = I(x) +a,, (I-xZ-/A-x X, <X$X, 41
b
Equation VIII.4 can be reworked as: v
N N f j
o Lagla50a) + k) + ] oagy5(x)] =0 0sxe] VIII.5 &
j=1 A=] .
where X
j m d e-\de XI
9;(x)= | [ &G N ) dodx'
X, )} -x'2
J-1
i m  -isd .
ki(x) = [ [ 8 %- cosa (/i-x%_] - Axz ) dodx’ .
J X 0 J 3
J-1 | i
X. e-de
1Aj(x) = J [ 8% 3 cosa(/i-xi - /i-xf;TT'dadx'
Xj-] 0
Rewriting VIII.5 and adding the terminal condition,
N J _
jgl 3 (gj( i)t kj(xi) + x§1 ixj("i” =0 x; = =172
i=1, ..., N
N ,
X2 - /1-x2 = _
jz] 3 (/1 X /1 Xj-]) 1,
Ll -~




Solution of above equations yields the dominant current distribution. }‘
Impedance is computed as (
i 4
' : N X -JjBx P

2oty el e TR« |
0 x'=0 k=1 X i

, k-1

|
-
!

|
| x
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Current distribution on a Circular Disk fed at the center
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IX. Impedance Calculation of a Thin Wire with Linear Current Distribution

S
~ - f Linear Current distribution

--)' — ___;::jr

-jgd jed
I ! [B2i(x)i(x') § - -—4(x)a—4(x )(e + jB) dxdx'da

gL 2 {;
1
M= g /2

Assumption of linear current distribution and computation of the kernel at

a =73
= %% (};] g)l [82(1-x)(1-x") %-jsd - (%.jsd + jB)] dxdx'
d = X=X +p
p = Radius of the wire
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Impedance Calculation of a Dipole with Linear Current Distribution
Via Diakoptic Theory

//\ - Linear Current distribution
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Program to Compute Impedance of Dipole Assuming Linear Current Distribution
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XI. Computation of Dominant Current Distribution for all Frequencies Via

Static Charge Distribution

Accurate computation of dominant current becomes one of the most important
tasks in using Diakoptic Theory for complicated radiating structure analysis.
For a general structure element it is a difficult task. Furthermore, if we can
compute dominant current for all frequencies, the impedance spectrum becomes
easy to compute. In many shapes, such as spheres, circular disks and cylindri-
cal conductors, the static charge distribution is either known or easy to com-
pute. In this section, we shall develop an algorithm to compute dominant

current distribution from static charge distribution.

Let
vy i s\ : - -
i(r') = (Z, (-3k)7 i 0et) () = T XI.1
- u . 2 U ' -
a(F’) = g (-3k)7 q (r') s q(F') =q XIL.2
q;\ = V . T;.' ) k = w/LE
Thus
A =g I I ("R (F)
om ngo m=0 nA
¥ Y et m, 1.3
= -jk XI.
T 320 n=0 A
T(?u)n}\-n—'l _
X = n dS' . D = - '
Ank gt (x-n)1 ,r r
Similariy
© A -
Al 1 < A=
8(F) =g= 7 (-ik)op,(r) XI.4
4me A=0 n=0 nA
where




Vel
=y = n A-n-1
¢nk(r) - S[ (A-n)?! D a5’

S' represents the total structure area.

Taking gradient of XI.4

-jupe Vo = %—1; : ZO (-3k)* NG
n=

e e s

where

A e

Boundary Condition Etan = 0, impiies

(-k?A(F) + jwueve)xdS = 0, dS = ndS XI1.5

Substituting XI.3, XI.4 into XI1.5 and equating powers of (-jk),

1_23d rxn o,
Sf V-7, )57 A T o XI.6
=y 1 3d rxn
., = (V"l')——-:—dS' =0 X1.7
]] £| D 3 |r|
(@7, ] 3‘”"“ds'-z] (-2 +K _x0) A=1,2 XI.8
] A+17 DT 3r I7| n,A+l nyA-1 220 :

n<a

If the impressed current is assumed real at all frequencies, we obtain

]
i] =0, ik(o) =0, k=2, ..., n. Equations XI.6 and XI.8 compute the

static current io and rest of the currents 12’ 13, cees in'




A. Cyh'ngjn'ca] Conductor —|
Dominant current equations are simplified as: )
r' <1 o L—-
us 1 y!
[ @T,(x)) (xX) gxtda = 0 o
0 0 D? ‘
- !
21rp1'0(o) =I, , D= /(x-x")* "+ (2ps1na/2)? t Ix=0,r=0
ijx) =0 "’
T ) A1 1 1 (T (A-n)(x-x")-1"
T Sx-x ) . - n NanA=N=2 .,
0[ %’ (v 1)\”) 53— dx do nZO é é L Tone )T 10 dx'da

Tables 1 and 2 represent computed values of the current In(x) and charge qn(x).

“Figures 19 anc?"zo show current In(x) and charge qn(x) for different values of B.

N L A P TISEU A,  A IE NL VIO L ST AT




I.(x)

Table 1, -I—o-(m- of a cylindrical conductor = 2%n %& = 10
Io(x) Iz(x) 13(x) 14(x) 11
L, 07 L, I, 4
0.0 1.000 0.0 0.0 0.0 |
0.1 0.865 -0.0644 -0.0070 0.0095
| 0.2 0.768 -0.1000 -0.0110 0.0157
g 0.3 0.677 -0.1231 ~0.0138 0.0206 {
§ 0.4 0.588 -0.1357 -0.0155 0.0243
5 0.5 0.500 -0.1386 -0.0163 0.0264 ;
0.6 0.412 -0.1323 -0.0160 0.0266 £
0.7 0.323 -0.1169 ~0.0146 0.0247 '
0.8 0.232 -0.0923 -0.0120 0.0203 3
0.9 0.135 -0.0570 -0.0079 0.0141 55
1.0 0.0 0.0 0.0 0.0 ’
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dIn(x)

2%

Table 2. ]o(o) & of a cylindrical conductor Q@ = 2&n ‘e 10
<o e o e o e T e
0.1 -1.010 -0.427 -0.0466 0.0683
0.2 -0.929 -0.286 -0.0331 0.0557
0.3 -0.896 -0.176 -0.0225 0.0435
0.4 -0.881 -0.076 ~0.0125 0.0292
0.5 -0.877 0.018 -0.0024 0.0124
0.6 -0.881 0.108 -0.0081 -0.0073
0.7 -0.896 0.199 -0.0195 -0.0304
0.8 -0.929 0.293 -0.0325 -0.0579
0.9 -1.010 0.414 -0.0500 -0.0957




B=1.3._ ..

Current Distribution on Cylindrical Conductor

FIGURE 18
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B. Circular Disc
2rxi(x) = I(x)
)1/2

D2 = (x% + x'? - 2xx'cosa

x=r/R, x'=r/R

Static charge equation is

L]
o

“2mxi(x) = I

2m ]d ovd 1 :
OI 0! ai. (X 'Io) K (6) dx'da o

i](x) =0

Higher order current densities are obtained by

A=1

I“ f]'d— (x'i ) (X-X'COSO.) dx'da = Z f“fl[( A-n ) d {x'1'){x-x'cos )
o o 9 A+] D3 nZo 00 AT dx''T Ta ¢

i' x'
- XgﬁiTT cosa] D2 dx'da
Lim ix(x) =0 A =1,2,...
x+0

Tables 3 and 4 show computed values for various currents and charges.
Figures 21 and 22 show current distribution and charges for different values

of B.




R

_ I (x) Iz(x) 13(x) I4(x)
X Static I—OTOT 7007 T (0T
v 0 0 0 o
0.0 1.000 1.000 0.0 0.0 0.0
0.1 0.995 0.995 -0.014 -0.00 0.00030
0.2 0.980 0.980 -0.039 -0.006 0.00105
0.3 0.954 0.954 -0.070 -0.012 0.00188
0.4 0.917 0.017 -0.101 -0.621 0.00241
0.5 0.866 0.866 -0.129 -0.031 0. 00229
0.6 0.800 0.801 -0.150 -0.041 0.00125
0.7 0.714 0.715 -0.161 -0.049 -0.00074
0.8 0.600 0.600 -0.157 -0.054 -0.00333
0.9 0.436 0.433 -0.129 -0.049 -0.00526
1.0 0.0 0.0 0.0 0.0 0.0
Table 3 : I (x)

’IL‘T(TT of a circular plate fed at the center
0

80




(

| Exact |div i(x) div i(x) div i(x) | div i(x)
X ’ , Static 1,(0) 1,(0) 1,(0) 1,(0)

| 2n/1-x2 .

: {
0.0 | -0.159 ~0.159 -0.647 -0.045 +0.01 i
0.1 | -0.160 ~0.160 -0.330 -0.045 00.009
0.2 | -0.162 -0.162 -0.229 -0.043 | 0.007 ‘
0.3 { -0.167 -0.166 -0.165 -0.041 0.004 ¥
0.4 | -0.174 -0.173 -0.117 -0.037 0.001 E

¥

0.5 { -0.184 -0.182 -0.081 -0.033 -0.002 |
0.6 | -0.199 -0.198 -0.043 -0.026 -0.004
0.7 | -0.223 -0.222 -0.011 -0.017 -0.006
0.8 | -0.265 -0.262 0.025 -0.004 -0.005
0.9 | -0.365 -0.362 0.082 0.022 -0.00185

Tabtea: 9V I(X) 5f 4 circular plate fed at the center

0
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Current distribution on circular plate fed at the center

Figure 20
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Idiv i(x)'-—-—-—)

1

’.I'J

Io

--,,.i-.!_.e-—-e—-s—-—. 8 = 0.5—

‘R =Mr'.adius of plate

... Y = distance from center

N
. : f f f ;_ ? : — t i f -%(x) =-surface current density

1 = impressed current at center

‘ - _1 o dix-i{x) -
- divi(x) __FL;;__—YST—f"'“"*‘

;'vaﬂL};ffwav¢1ength v;—%—4}7f2?~;-{~-~w

AJ

: 0:3 : f).'l 1 E 0'0'2 -‘5

0:3;70

Figure 21 Charge distribution on a circular plate fed at the center
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XII. Top Loaded Dipole Antenna

In this section we shall compute impedance characteristics of a top loaded

dipole as shown in Figure XI-1

R i
- =
Element 3 T~ Terminal (}) }
Terminal (?) 2o Element 1 1 f
y b+ % Terminal (2) '.‘
p = ;& {
. 2 }
Terminal (?) oi\\\iTerm1na1 (]) i
Element 4 E]em?nt 2 2 ;
«——Terminal (2)

Fig. 722 Dipole with Circular Plates Capactive Loading

Section X is used to compute dominant current distribution on various radiating

elements. Using the dominant current distributions, the various impedances are ,

computed as

i,f. - ,iw 2 . *
Zk,m - I f (Am 1

g iy ad
1 + ¢mqk)o'§ . X1I-1
k'm S

i
k

where (;) represents the impressed current terminal and (;) represents the

terminal where resulting potential is computed.




Matrix equation relating ootentials to impressed currents is:

3 33 31 31 32 32 34
8 53 2 | A 52 m
1 13 1 n 12 12 14
¥ I3 Ly | Ixy Ly L3, Iy
1 13 1 1 12 12 14
% I L2 | In I 13 I
2 23 21 21 22 22 24
3 aF o | Iy mn Yy 2D
2 23 21 21 22 22 24
% 1 Ly | In L5 55 I
4 43 a1 a1 42 42 a2
% 2% Lz | In I L1z Iy
Let
Mo 22 22
== =1p=1
33 .44 1
1=y =4
28 _ 13 _ 82 _ 31 _
=l =Li= 4= 4
12 .21
n=4n =1
28 _ 13 _ 42 _ 31 _ 1
M=nn=n=In=4
12 .21 12 .21
Lig=ly =1y =15 = 13
85

X11-2



AD~A096 685

UNCLASSIFIED

RUTGERS = THE STATE UNIV PISCATAWAY NJ COLL OF ENGIN=-ETC F/6 9/5 :
MATHEMATICAL MODELING OF MULTI-ELEMENT MONOPOLE ANTENNAS.(U)

MAR 81 N N PURI+ 6 GOUBAU» A STAVRIOIS DAAGZ9-79-C-0201
ARO=15415.2-EL

2«2
‘Pas as




it e S
) I |
14 _ 32 _ 81 _ .23 _
= =In=7=7
N .22 _ 1. 22
Qo= =ln=413° 7
12 _ .21 :
o=y =1 ‘
32 .23 14 41 _
Bo=In=1yn=4,=1
34 43 |
M=y =4
Thus
3 | ' ' 3 ;
Eh 2 7 Z 2, 25 Z, I |
] 1 1 j
3, 2 Z, Z, 2, Z Z I !
3 3 2 0 1 3 4 1
2 ' 2 ]
¥ Zy Z3 Iy Z, Z, Iy L
2 2 ’
) Zg Zg Zy Z, Zy L I
4 ! ’ ’ 4
) Z; Zg Z4 I3 4 Z, L
Potential Condition: ¢? = q;%, ¢% - ¢¥ =V, ¢§ = ¢$ ) !
Continuity Condition: I? = -I;, I:: = -I%, Ig = .- 1?
i 26

R e R RE VT R o e




Thus
o |Z-z0-z+z. | zo-z-7,42, | z.-7.-2+2. 1 | 1 B
e e BT I e e A I AL B R !
BE ; .
Vol= 23714242y | 2747242, y-Tp-y*2y | |1 i J
] P4
s U ] i ! s
5 Py -7 - a7 - P
; 0 2Lylgtlg | 15-0y=1,%2, | L -4, | | L ‘1
1
Solving for Io’ }
. (za-zz1+z°+zzs-zs-z7)v
0 ) ' ' ]
Thus
4
, 2V 2(2y-29) (222942 +22¢-15-1,) -(15-1,-7,+1)(22}+224-22,-22,)
in 971 7 . {
0 (Zy-2244Z +22¢-1¢ Z,)
3
A
'
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Conclusion
The major advantage of the diakoptic theory for multielement antennas,
is that the problem of determining the current

distribution on the antenna need not be solved for the structure as a whole,
but only for the individual structure elements. Excitation of each structure
element is ascribed to the currents at its junction with adjacent elements,
and to the fields of the surface currents on all the other elements. The
current distributions produced By the junction currents have been termed
dominant current distributions, because they constitute the major portion
of the currents on the composite antenna structure. The remainder of the
currents are made up by scatter currents which are produced by field coupling.
Field coupling,as a first approximation, is determined by the dominant current
distributions, while coupling by the scatter currents 1in general is negli-
gible. Introduction of impedances for the characterization of structure
elements and their interaction permits utilization of network theory concepts
for the determination of the junction currents and the input impedance of the
antenna. Formulation of all impedances by stationary expressions renders the
results insensitive to computational errors in the current distributions. As
demonstrated by the example given in the paper, even rather crude approximations

to the dominant current distributions can yield good results.
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Appendix 1

Equivalence between Current and Charge Excitation

Consider a structure element excited by an oscillating charge Q which
is placed at a distance d-0 above the (plane) contact area o(Fig. 4). The
charge Q produces an electric potential field - Gsp which acts as the pri-
mary field for the excitation of the structure eiement. The induced current
and charge distribution 7,q radiates a Maxwell field which is characterized
by the retarded potentials & and ¢é. The total field satisfies the boundary

condition Etan = 0:

[juk + (V¢ + Gsp)] xdS=00nS and o (A1.1)

Current and charge distribution satisfy the continuity condition

1+3uq=0 on S and ¢ (A1.2)
Let

i=15ons, = TU on o, q=qs0onS,q=q_ 0nc (A1.3)

K= AS + Ao $ = 65 + 60 (A1.4)

where AS and 65 refer to the current and charge distribution on S, and A°
and 50 to the current and charge distribution on ¢. Since ¢<<S, the contribu-
tion of Aa to the total vector potential A can be neglected. The charge distri-

bution L consists essentially of the counter-charge to Q:

do = - Q (A1.5)
e
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There is a small additional induced charge on o which is a continuation of
the charge distribution on S into the contact area. This charge can be neg-
lected since ¢<<S.

When d approaches zero, the potential field of the oscillating charge Q

is compensated by that of the counter-charge:

Thus ¢p e, = 0,7V = Voo (A1.6)

P

This means, the entire field is practically only determined by the current and

charge distribution on S which satisfies the boundary condition
(juBg + 7o¢) x dS =T on S (A1.7)

and the continuity condition

V-¥S+ jqu= 0 | (A1.8)

Moreover, since the net charge on the structure element is zero, the charge on

S is Q, and the current flux through the boundary I of the contact area is juQ.

Thus, the current and charge distribution on S, produced by the external
charge Q, are identical with the dominant current and charge distribution pro-
duced by an impressed current [ = juQ.

Since juQ is the displacement current which enters the structure element
at the contact area it is obvious that excitation by an impressed displacement

current is equivalent to excitation by an impressed conduction current.
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Appendix 2

Derivation of Equation I1I.]9

i e an i

N v

Consider a structure element with several terminals and let k and j be

any two terminals where currents Ik and Ij are impressed. The corresponding

. produce the

dominant current and charge distributions {k’ g and 7j’ aj

fields Ek and Ej which satisfy the boundary conditions
E, x dS =~ (juk, +74) xd5 =0 (A2.1)
Ej x d§ = - (ijj + WJ) xdS =0 (A2.2)

Since the currents ik and 1j are tangential to the surfaces, it follows from

the boundary conditions

fs(ijk +78,) - T ds=0 (A2.3)
(Juk, +94,) - T, d5=0 (A2.4
Js k k J )

Using the vector identity
T o (1) =76 - T+ o(F-7) with¥ « 7 = - jug (A2.5)

and applying Gauss' theorem as in (8) of Section Il, equations (A2.3) and
(A2.4) can be written in the form

] fsca R X ijS(Ak CT, 4 d g, )ds (A2.6)




- fsfa A BIE RN jmf (B - Ty + 49,00 (A2.7)

where 6kk is the potential at the terminal k due to Ik’ and &jk that at the
terminal j due to Ik' For j = k, (A2.7) transforms into (A2.6).
With

ij = ijlk (A2.8)

one obtains from (A2.7) the expression for ij given in the first line of II1I.19.

The formulation in the second 1ine of III.19 is obtained if the potentials

A, and $k are expressed by III.1 and III.12 respectively. '
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) Appendix 3

Derivation of Equation III.23 .

. . |

Let ?; be a dominant current distribution on the surface s' and {

62” be the scatter current distribution on S" produced by ?; (n=1,2, ..., N). f
[
ir= N ing= - - n - ¥

A7) = & 3 [ sTIN(FO)6(F, AN (F) (A3.1) r
k 4n k ;
n=1 gn |‘

- Multiplying (A3.1) with 71(?) and integrating over -

oy tipmiacd o B 3iimy o N[ 3 nzaarz eyachyshoaci s :

aAk(r) . fk(r)ds o= Tk(r) ) §T, (r)6(r ,r')ds (r)ds (r) ’
Si Si n=1 gn :
y N ing= tiiavara = 12y 4002 .

N G GO IR HCECR O P OTRCD
n=l gh Si
N 1
in, < i2y4eN - = = =
D[ s1iME) - KlRIas”, (6(F.F) = GG 7))
n=1 gh [
1
(A3.2) 3
Similarily it can be shown that
| so) ol ast = 'Z‘ sqi §1 gsn (A3.3) -
}. 5 2% % R . 1
: S S

{
{ The nroof for III1.31 in the body of the paper follows the same outline
i
i

given above.
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Appendix 4

Proof for the Stationary Formulation of the Impedances

|
a) To prove that i
!

2=l [ (-1 + $q)ds (A4.1) fa
I"/s
|
represents a stationary formulation of the intrinsic impedance, we assume that ‘ ;
. the dominant current distribution 1 has an error of a¥. The corresponding errors
of q, A and $ shall be denoted aq, AR and 4é. Then 1
|
2+ a2 =8 [ (R + Ah)-(F + aT) + 5+ 40)(a + 29 ]S (A4.2) |
I" /s

The boundary condition for the correct dominant current distribution yields 4
fs(ij +79) - AT dS =0 (A4.3)
Since the dominant current distribution is the continuation of the impressed

current which is assumed to be unchanged, a7 is zero at the terminal, and

(A4.3) can be written in the form

quS(A « A7 + ¢44q)dS = 0 (A4.4)

Using the relations .

ISA « a7 ds = JSAA - 7 ds; JssAq ds = jsasq ds (A4.5)




aZ

Jk

along with (A4.4), one obtains

J (K - a7 + 44q)dS = J (AR - 7 + 84q)dS
S S

Thus, from (A4.1), (A4.3), and (A4.6)

AZ = 12 I (aR - a7 + a4aq)dS
12 s

This means, AZ is of second order.

b) In the case of a mutual intrinsic impedance

7. = Y JS(AR . 1j + akqj)ds

(A4.6)

(A4.7)

(A4.8)

both the dominant current distributions Tk and ¥j may have errors A{k and

3.. Thus
A j Thu

k™J

= W .1 ~ ’ - - - “
TT fs[(AAk Ty taeag) + (R - o5+ 4y q5) + (R~ af; + 2609 0]es

(A4.9)

Because the correct dominant current distributions satisfy the boundary condi-
tion E x d5 = 0,

or

fs(julk + Gsk) . Aijds =0

ju[s(ﬂk . A‘j + skAqJ)dS =0

(A4.10)

e it e e+ i b Bs = am o b

e m———— L




Furthermore

[ (eh - 1)+ niap)es - L(Aj AT, + §500,)d = 0 (Ad.11)

From (A4.10) and (A4.11), (A4.9) reduces to

Aij = T:%; IS(AAk - 81y + A¢kqu)dS (A4.12)

Thus Aij is of second order.

c)To prove that III.33 1{s a stationary expression for the field coupling
impedances we treat the assembly of disconnected structure elements like a
single body. This means, when a current is impressed on terminal (;) we con-
sider the dominant current distribution ?i together with the associated scatter
currents 57: which are distributed over af] the elements as a dominant current
distribution of the system. The coupling impedances between any two terminals
can then be formulated like mutual intrinsic impedances (A4.8):

i,2 : . .
o) = e [zsn[(A; + 6RE)-(Tp + 6T1) + (3% + s38)(ah + sqh)lds  (M.13)
’ k'm

The error AZE; produced by errors in the current distributions 7;, 67&
and 1:', 51; {s obtained from (A4.12):
1,4 jw i i 2 '3 ~1 ~1 2 L
AZ(F) = —d@ [(aR] + asR[)- (A1 + a87%) + (aé! + 84,)(aqr + a8q°)]dS
.2 k k m m k k m m
k,m I.1 n
k'm "JS
(A4.14)

and is of second order, This relation can also be derived from III.33

but only in a rather cumbersome manner.
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Appendix 5

If a current is impressed on any terminal of a diakopted structure there
will be capacitive currents between the contact areas of the disconnected ele-
ments, which have not been considered in the derivation of the field
coupling impedances. One might therefore conclude that the formulas are approxi-
mations which require the gaps between adjacent contact areas to be so large

that capacitive currents are negligible. The purpose of this appendix is to

1,1 i,8
show that the expressions for Z(F) and Z(F) are correct even if the gaps are
k,k k,m

infinitely smali.

Figure 25 shows two structure elements, a clylindrical rod 1 and a disc 2
with the opposing contact areas a; and a%. If a current is impressed on the
terminal (}) of the rod, there will be a potential difference between o; and
o% which, in turn, produces a displacement current between these terminals.

The potential difference which is the line integral of the electric potential
field between a; and o% is essentially determined by the charges on the contact
areas. If the gap is made smaller and smaller, the potential difference ap-
proaches zero, and the total current distribution becomes the dominant current
distribution of the interconnected elements. As shown in Appendix 1 displace-
ment currents at contact areas are equivalent to impressed currents. Thus, the
situation discussed above is the excitation of a diakopted structure not by one,
but by three impressed currents. To produce excitation by one impressed cur-
rent in accordance with our theory the displacement currents must be compen-

sated so that there is no current flux from the contact area onto the surface S

of the element (S, by definition does not c.n ain the contact areas of the

element). The magnitude of these compensating currents does not enter into
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FIGURE 25

Compensation of Capacitive Currents at Contact Areas
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the analysis because, if the impressed currents of the diakopted structure
are identical with the junction currents of the interconnected structure there
are no displacement currents between adjacent contact areas and the sum of

all the compensating currents is zero.







